
GEO2CGM
Documentation for MATLAB code to convert GEO units

to CGM units

Version 1.0

Aaron Hendry

University of Otago
Dunedin, New Zealand

February 2016

http://www.otago.ac.nz/physics/space/


Support
Although care has been taken to make this code bug-free, errors and unforeseen
corner cases are always a possibility. Please do not hesitate to contact the author
(Aaron Hendry - aaron.hendry@otago.ac.nz) with bug reports, comments, queries,
etc.

1 Outline
This code is intended to facilitate the conversion from spherical geographic coor-
dinates (i.e. altitude, latitude, longitude) to spherical corrected geomagnetic coor-
dinates in MATLAB. All magnetic field calculations for years between 1900–2015
are done using the IGRF-12 internal field model (Thébault et al., 2015). For years
1590–1900, the gufm1 model is used (Jackson et al., 2000); currently no magnetic
field calculations are possible prior to 1590. For the years 2015-2115, Gauss coeffi-
cients based on the predicted evolution of the geodynamo are used (Aubert, 2015).
For years after 2115, secular variation values from 2115 (also from the Aubert (2015)
model) are used to extrapolate forward in time, though obviously with increasing
uncertainty.

1.1 History

This code is based off a set of FORTRAN function called GEO-CGM derived from
GEOPACK-96 - a collection of subroutines which perform various geomagnetic field
calculations, originally written by N. A. Tsyganenko.

GEOPACK has undergone many iterations, with the most recent version be-
ing GEOPACK-08. GEOPACK is written in FORTRAN which, while allowing for
very fast computation, is somewhat unwieldy in modern computing. Compiling
FORTRAN on modern computers is not always an easy task, and the number of
people fluent enough in FORTRAN to update and debug it is decreasing over time.
Converting this code to run in modern environments (for instance MATLAB, IDL,
SciPy) makes it much easier to keep this code relevant and updated.

The MATLAB code described within has been written to have no MATLAB
toolbox dependencies, and should work on most modern MATLAB installations.

1.2 Algorithm

The algorithm used in this code is the the same as was used in the GEO-CGM
FORTRAN code, with some modifications to improve efficiency and readability. An
outline of the algorithm is as follows:

For a given latitude, longitude, and starting height:

1. Calculate the magnetic field vector < Bx, By, Bz > at the current point (using
IGRF, or the appropriate magnetic field model for the given epoch).

2. Step a distance ds up the magnetic field line passing through the current point.

1



3. Calculate the (dipole) MAG coordinates at the current point, and check if
the magnetic latitude is within some tolerance of 0 (i.e. the dipole magnetic
equator has been reached).

(a) If the dipole magnetic equator has not been reached, repeat steps 1-3
until the dipole magnetic equator has been reached.

(b) If the dipole magnetic equator has been reached, calculate the (dipole)
MAG coordinates of the footpoint of the magnetic field line passing
through the current point, at the starting altitude. These coordinates
are the CGM coordinates of the starting point.

The “step” procedure in step 2 is a numerical integration along the magnetic field
line, using some numerical integration routine. In both this code, and the original
GEOPACK code, a Runge-Kutta-Merson algorithm is used to calculate the steps
up the field line. This step could be sped up slightly by using an Adams predictor-
corrector method, which reduces the number of magnetic field calculations that need
to be made at the expense of slightly reduced accuracy and an increased memory
profile. For simplicity, I have stuck with the original Runge-Kutta method.

This process fails for low-latitudes, where CGM coordinates are no longer defined.
The paper by Gustafsson et al. (1992) gives two methods of calculating pseudo-CGM
coordinates in the regions where CGM is forbidden:

1. Calculate the closest points in latitude (both North and South) along the
same GEO longitude for which CGM coordinates are defined, and interpolate
between these values to obtain a CGM latitude/longitude pair, OR

2. Calculate the ‘dip equator’ for the longitude in question, and interpolate be-
tween this equator and the nearest point for which CGM coordinates are de-
fined.

For simplicity, I have implemented the first of these methods - the GEO-CGM
code used the second method. This results in some significant differences between
the produced CGM coordinates in these regions, however as CGM is technically not
defined in these regions, neither approach is any more or less accurate.

In the Gustafsson et al. (1992) paper, they mention that above ∼ 10 RE the
IGRF field becomes essentially dipolar, as as such “...the tracing of the field line
from the high-latitude area could be stopped on the 10 Re surface and the dipole
field line might be restored from this surface to determine the corrected geomagnetic
coordinates for that area”. This STOP criterion was implemented in GEOPACK
(although due to how they have implemented it, it actually stops at > 11RE rather
than > 10RE). Note that we have NOT implemented this STOP case, so the tracing
will continue to the top of the field line. However, to prevent a runaway case in the
MATLAB code where the tracing continues forever, we have included a hard-limit
of 1000 steps for any given point. In reality we believe this limit will likely never be
reached.

2



1.2.1 IGRF calculation

The IGRF coordinates for a point are calculated from the scalar field V :

V (r, θ, ϕ, t) = RE

N∑
n=1

n∑
m=0

(
Re

r

)n+1

[gmn (t) cosmϕ+ hm
n (t) sinmϕ]Pm

n (cos θ)

where RE is the radius of the Earth (defined as 6371.2 km) r is the altitude
of the point (km), θ is the geographic co-latitude, ϕ is the geographic longitude,
gmn (t) and hm

n (t) are the Gauss coefficients for time t, and Pm
n (x) are the Schmidt

quasi-normalized associated Legendre functions of degree n and order m.
Pm
n (x) is somewhat slow to calculate, and must be recalculated every time IGRF

is called with a different latitude. To speed this process up, we pre-calculate Pm
n (x)

to create a look-up table, and interpolate between these pre-calculated values to get
a close approximation to the actual values of Pm

n (x). The error introduced by this
process is negligible (i.e. typically < 10−8 degrees), while the speed up is significant
(i.e. often cutting processing time in half).

When the magnetic field calculation process is called, gmn (t) and hm
n (t) must be

calculated. For the IGRF model, gmn (t) and hm
n (t) are provided at 5 yearly intervals

from 1900 through to 2015 (as of the time of writing), with new coefficients produced
every 5 years. Linear interpolation is used to produce coefficients for years in between
the 5-year milestones. For the other models, similar interpolation is done.

The GEO-CGM code (and the original GEOPACK code) interpolated gmn (t) and
hm
n (t) using only the year of the date in question - this results in a discontinuity

at the year boundaries. For instance, the same gmn (t) and hm
n (t) would be used for

any date in 2010, with a sudden change in the coefficients at the start of 2011. To
produce a more realistic variation, we use the entire date to interpolate the gmn (t)
and hm

n (t) values, resulting in a smooth change from day to day and year to year.
The original GEO-CGM behaviour can be reproduced by using the 1st of January
of whatever year as the epoch date.

The GEO-CGM code (and the original GEOPACK code) also only use a subset
of the IGRF coefficients, using fewer coefficients at higher altitudes, I presume to
speed up the IGRF calculations. I do not do this, instead using as many coefficients
as possible (13 for the year 2000 onwards). The increase in computational time is
fairly insignificant, and could potentially offer greater accuracy.

Finally, the GEO-CGM code that I was given used single-precision floating point
values in all of its calculations. MATLAB by default uses double-precision floating
points, which offer a far greater degree of accuracy. Though the difference is very
small on a case-by-case basis, these small differences add up over the numerical
integration process, resulting in measurably different results from otherwise identical
code.

There are several differences between the GEO-CGM code and this MATLAB
code, which result in slightly different calculated CGM latitude and longitude val-
ues. The differences are most pronounced near the geomagnetic poles (where the
geomagnetic equator is not well defined) and near the equatorial region (where CGM
coordinates are ‘forbidden’). For 2 < L < 6, the variance between the GEOPACK

3



and MATLAB values is typically < 0.02° CGM latitude and < 0.05° CGM longitude.
For 6 < L < 11, the variance is typically < 0.04° CGM latitude and < 0.1° CGM
longitude. At higher L-shells, the difference between the GEO-CGM and MATLAB
code becomes more pronounced, possibly due to the difficulty associated with find-
ing the geomagnetic equator in these regions. For L > 11, the variance is typically
< 0.1° CGM latitude and < 0.5° CGM longitude. Near the equatorial region, due
to the different interpolation methods used the variance is large, often with several
degrees difference between the two.

There are slight differences in the L-shells calculated by the two methods, as well.
As with the latitudes, the differences in the equatorial regions are complicated and
often significant due to the different interpolation methods used. For 2 < L < 10,
the average difference in L-shell is ∼ 0.005L. For 10 < L < 16, the average difference
in L-shell is ∼ 0.03L. For L > 16, the GEO-CGM code returns NaN values, so no
further comparison can take place.

Finally, there are slight differences between the models from 1990-2010, as the
original GEO-CGM code was using IGRF coefficients, whereas the new code uses
DGRF values for these years (where the DGRF values are the “definitive” values).

2 Using the code
This code is designed to be simple to use - call the GEO2CGM function with a set
of latitudes, longitudes, a start height, and a date, and receive CGM latitude and
longitude values as a result. Note that all latitudes and longitudes are in degrees.

The following code snippets describe a set of use cases:
Calculating a single CGM coordinate:

% Calculate the CGM coordinates of a single point

lat_geo = -78.5; % Geocentric latitude (in degrees)

lon_geo = 156.4; % Geocentric latitude (in degrees)

height = 110; % start height in km

epoch = datenum(2013,1,5); % Date to calculate for

[lat_cgm,long_cgm,l_shell] = geo2cgm(lat_geo,lon_geo,height,epoch);

Calculating multiple CGM coordinates:

% Calculate the CGM coordinates of multiple points

% If you want to calculate CGM coordinates for a lot of latitudes

% and only a single longitude (or vice versa), you only have to

% specify the longitude once

lat_geo = [45,50,55,60,65,70]; % Geocentric latitude (in degrees)

lon_geo = 90; % Geocentric latitude (in degrees)

height = 110; % start height in km

epoch = datenum(2013,1,5); % Date to calculate for

[lat_cgm,long_cgm,l_shell] = geo2cgm(lat_geo,lon_geo,height,epoch);

Calculating a grid of CGM coordinates:

% Calculate the CGM coordinates of a grid of latitudes and longitudes

lat_range = -88.75:0.5:88.75; % Geocentric latitude (in degrees)

lon_range = 0:0.5:360; % Geocentric latitude (in degrees)

4



[lat_geo,lon_geo] = meshgrid(lat_range,lon_range); % Generate the grid

height = 0; % start height in km

epoch = datenum(2013,1,5); % Date to calculate for

[lat_cgm,long_cgm,l_shell] = geo2cgm(lat_geo,lon_geo,height,epoch);

Due to the efficiency with which MATLAB deals with, it is much faster to cal-
culate a vector/matrix of latitudes and longitudes than it is to calculate them all
individually.

Note that to use this code, the following files must all be located on your MAT-
LAB path:

• cart2sph.m

• dipole.m

• geo2cgm.m

• geo2mag.m

• igrf.m

• igrf_coeff.mat

• igrf_gh.m

• igrf_pq.m

• mag2geo.m

• sph2cart.m

• step.m

• trace_fieldline.m

References
Aubert, J. (2015), Geomagnetic forecasts driven by thermal wind dynamics in the

Earth’s core, in: Geophysical Journal International 203 (3), 1738–1751, doi:10.
1093/gji/ggv394, eprint: http://gji.oxfordjournals.org/content/203/3/
1738.full.pdf+html.

Gustafsson, G., N. Papitashvili, and V. Papitashvili (1992), A revised corrected
geomagnetic coordinate system for Epochs 1985 and 1990, in: Journal of Atmo-
spheric and Terrestrial Physics 54 (1112), 1609–1631, doi:http://dx.doi.org/
10.1016/0021-9169(92)90167-J.

Jackson, A., A. R. T. Jonkers, and M. R. Walker (2000), Four centuries of ge-
omagnetic secular variation from historical records, in: Philosophical Transac-
tions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 358 (1768), 957–990, doi:10.1098/rsta.2000.0569, eprint: http:
//rsta.royalsocietypublishing.org/content/358/1768/957.full.pdf.

5

http://gji.oxfordjournals.org/content/203/3/1738.full.pdf+html
http://gji.oxfordjournals.org/content/203/3/1738.full.pdf+html
http://rsta.royalsocietypublishing.org/content/358/1768/957.full.pdf
http://rsta.royalsocietypublishing.org/content/358/1768/957.full.pdf


Thébault, E. et al. (2015), International Geomagnetic Reference Field: the 12th
generation, in: Earth, Planets and Space 67 (1), 1–19, doi:10.1186/s40623-
015-0228-9.

6


	Outline
	History
	Algorithm
	IGRF calculation


	Using the code

